پیشبینی قیمت کوتاه مدت مبتنی بر موجک-ELM ترکیبی، برای بازار برق چکیده ــ پیشبینی دقیق قدمت برق، چالشی بزرگ برای شرکت کنندگان و مدیران بازار می باشد، زیرا قیمت الکتریسیته دارای نوسانات بسیاری است. پیشبینی قیمت نیز، مهم ترین هدف مدیریتی برای مشارکت کنندگان در بازار است، چرا که مبانی بیشینه کردن سود را، تشکیل می دهد. این مطالعه، عملکرد یک تکنیک شبکه عصبی جدید را بنام ناشین یادگیری سریع (ELM)، در مساله پیشبینی قیمت، بررسی می کند. با در نظر داشتن خط مربوط به بازهای برق که دارای نوسانات بسیاری در قیمت هستند، تکیه به یک تکنیک، خیلی هم سودمند نمی باشد. بنابراین، ELM با تکنیک موجک همراه شده است و یک مدل پیوندی (مرکب) را به نام WELM (ELM مبتنی بر موجک) را تشکیل داده است تا دقت پیشبینی و نیز قابلیت اطمینان آن را، بهبود بخشد. در این روش، ویژگی های بی همتای هر ابزار، تکریب شده اند تا الگوهای مختلفی را در اطلاعات، بدست آورند. قدرت این تکنیک، با استفاده از روش مجموع شده، بهبود بیشتری می یابد. عملکردهای مدل های ارایه شده، با استفاده از اطلاعات موجود در بازارهای برق انتاریو، PJM، نیویورک و ایتالیا، ارزیابی شده اند. نتایج آزمایشی نشان می دهند که روش پیشنهادی، یکی از مناسب ترین تکنیک های پیشبینی قیمت می باشد. کلیدواژه ها: شبکه عصبی مصنوعی (ANN)، تجدید ساختار، روش مجموع، ماشین یادگیری سریع (ELM)، پیشبینی قیمت، تبدیل موجک