|
|
تهیه نقشه های زمین شناسی توسط
تصاویر چندطیفی، با توجه به نزدیکی رفتار طیفی بسیاری از سنگها
می تواند امری دشوار باشد. لذا در این پژوهش روش ماشین
بردار پشتیبان (SVM)، بعنوان يكي از رو شهاي طبقه بندي تصوير كه قابليت انعطاف مناسبي براي حالات مختلف دارد مورد استفاده قرار گرفت و كرنلهاي مختلف آن با روش شبكه هاي عصبي
(NNC) بمنظور توليد نقشه زمين شناسي و با مقادير مختلف نمونه هاي تعليمي و با توجه به برداشتهاي زميني
و
مطالعات آزمايشگاهي، مورد تحليل و ارزيابي قرار گرفت. نتايج
به دست آمده نشان داد روش SVM در هر سه كرنل خود توانسته است بيشترين دقت (83.42%) را نسبت به دو روش ديگر ارائه كند. همچنين روش
SVM با % 50 از داده
هاي
تعليمي نيز مي تواند به دقتي معادل استفاده از % 100 نمونه هاي تعليمي برسد در حاليكه روش NNC چنين قابليتي را از خود نشان نداد. از طرفی ارزیابی نتايج حاصل از شاخص تفكيك پذيري جفريس- ماتوسيتا با نتایج دقت طبقه بندی به روش SVM گوياي اين حقيقت است كه اين روش در داده هاي با تفكيك پذيري پايين تر بسیار کارآمد
تر از روش NNC مورد بحث بوده و بنابراين به نظر مي رسد اين روش براي تهيه نقشه زمين شناسي مناسب تر از روشNNC خواهد بود.
:: برچسبها:
دانلود ,
پایان نامه ,
تحقیق ,
دانلود پایان نامه ,
svm ,
SVM ,
دانلود SVM ,
دانلود svm ,
مقايسه روش SVM و شبكه عصبي در طبقه بندي تصاوير ماهواره اي چند طيفي ,
دانلود مقايسه روش SVM و شبكه عصبي در طبقه بندي تصاوير ماهواره اي چند طيفي ,
مقايسه روش SVM و شبكه عصبي ,
تصاوير ماهواره اي چند طيفي ,
طبقه بندي تصاوير ماهواره اي ,
:: بازدید از این مطلب : 163
|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
تاریخ انتشار : دو شنبه 12 خرداد 1395 |
نظرات ()
|
|
|
|
|